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Abstract

The conventional Lorenz-Mie formalism is extended to the scattering process
associated with a coated sphere embedded in an absorbing medium. It is shown that
apparent and inherent scattering cross sections of a scattering particle, which are identical
in the case of transparent host medium, are different if the host medium is absorptive.
Here the inherent single-scattering properties are derived from the near-field information
whereas the corresponding apparent counterparts are derived from the far-field
asymptotic form of the scattered wave with scaling of host absorption that is assumed to
be in an exponential form. The formality extinction and scattering efficiencies defined in
the same manner as in the conventional sense can be unbounded. For a nonabsorptive
particle embedded in an absorbing medium, the effect of host absorption on the phase
matrix elements associated with polarization is significant. This effect, however, is
largely reduced for strongly absorptive particles such as soot. For soot particles coated
with water, the impurity can substantially reduce the single-scattering albedo of the
particle if the size parameter is small. For water-coating soot and hollow ice spheres, it is

shown that the phase matrix elements —B, /B, and P/ P are unique if the shell is

thin, as compared with the case for thick shell. Furthermore, the radiative transfer



equation regarding a multidisperse particle system in an absorbing medium is discussed.
It is illustrated that the conventional computational algorithms can be applied to solve the

multiple scattering process if the scaled apparent single-scattering properties are applied.
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1. Introduction

The geometrical shapes of many micron-sized natural particles including cloud
droplets can be well approximated as spheres in light scattering calculations. The Lorenz-
Mie theory' provides the theoretical basis for the interaction between a sphere and an
electromagnetic wave (e.g., Ref. 2-5). Numerically stable and efficient algorithms and the
corresponding computational codes have been developed*® for deriving the exact single
scattering properties of spherical particles. Although the scattering problem associated
with spheres, involved in many applications including aircraft and satellite remote
sensing, seems to be solved, an issue on this subject still needs to be addressed. In the
conventional Lorenz-Mie formulation, the host medium within which the sphere is
embedded is assumed to be a nonabsorptive dielectric material such as air. For many
situations, the medium surrounding the spherical particles may contain constituents with
significant absorption. For example, ozone and CO, in the atmosphere have strong
absorptive bands at 9.6 and 15 pm, respectively. Additionally, atmospheric water vapor
provides a strongly absorbing component to the air surrounding spherical aerosol or water
particles in both solar and infrared spectral regions.

For scattering of solar and infrared radiation by atmospheric particles embedded
in an absorbing medium, the absorption effect of the host medium on the scattering
properties of the particles may not be negligible. When the host medium is transparent
(i.e., a dielectric medium with a purely real refractive index), the use of the standard
Lorenz-Mie formulation does not raise any difficulty. In this case, the effect of the host
medium can be accounted for by determining a relative refractive index for the scattering

particle, which is defined as the ratio of the particle refractive index to that of its host



counterpart. Unfortunately, the scattering properties of a sphere in an absorbing medium
cannot be obtained by simply modifying the refractive indices for the particle and the
host medium along with scaling the incident wavelength in the input list of the
conventional Mie computational code. Thus, there is a necessity of reformulating the
conventional Lorenz-Mie theory to accommodate a spherical particle embedded in an
absorbing medium.

The scattering properties of a homogenous sphere in an absorbing medium have
been investigated by several authors’'”. On this specific issue, two approaches that are
based either upon the asymptotic form of electromagnetic field in the radiation zone (i.e.,
the far-field)’ or upon the information of the field at particle surface (i.e., the near-
field)'"'"? have been used in the previous calculation of the extinction and scattering cross
sections. When the host medium is absorptive, the host absorption has not only attenuated
the scattered wave in magnitude but also modulated the wave mode when the wave
reaches the radiation zone. Thus, for an observation in the radiation zone, the particle’s
inherent optical properties are coupled with the absorption effect of the medium in an
inseparable manner. For this reason, the scattering properties of the particle that are
derived from the far-field asymptotic form of the scattered wave, though rescaled by
removing the exponential absorption of the host medium between the particle and the
observational point, are the apparent optical properties of the scattering particle. The
apparent scattering and extinction cross sections for a sphere in an absorbing medium
have been derived by Mundy et al.’, which unfortunately may be implausible at times
because the corresponding extinction efficiency can be smaller than the scattering

efficiency. This discrepancy is caused by neglecting the absorption of the incident wave



within the host medium in the calculation of the extinction cross section, as is shown by
Chylek'. The true or inherent scattering and absorption cross sections of the particle can
be calculated by integrating the Poynting vector at the scattering particle’s surface as
shown by Chylek'®. The apparent optical properties reduce to their corresponding
inherent counterparts if the absorption of the host medium is absent. Most recently,
Sudiarta and Chylek'' reported the numerical calculations for the inherent extinction and
scattering efficiencies based on the theoretical frame developed in Chylek’s previous
work'®. Similar calculations were reported by Fu and Sun'® who also investigated the
effect of absorption within the host medium on the phase function and asymmetry factor.

The inherent extinction and scattering efficiencies have limited applications in
practice for three reasons. First, these efficiencies do not have the conventional meanings
in that the corresponding cross sections are not simply the products of these efficiencies
and the geometrical projected-area of the particle. In fact, since the incident irradiance
spatially varies when the host medium is absorptive, a reference plane must be specified
to unambiguously define extinction and scattering cross sections. Second, to consider the
bulk scattering properties of a polydispersive system, one always deals with the far field
and consequently, the apparent optical properties. Third, the motivation to determine
particle single scattering properties is primarily for radiative transfer calculations that
require both cross sections and an accurate description of the phase matrix. It is not self-
consistent to use the inherent cross sections in radiative transfer calculations when the
corresponding phase matrix is an apparent optical property.

The intent of this study is to properly define the apparent extinction and scattering

cross sections versus their inherent counterparts. Additionally, we also investigate the



effect of host absorption on the polarization configuration of the scattered wave since the
previous studies focus primarily on the total cross sections and scattered intensity.
Furthermore, because the scattering properties of coated spheres such as black carbon
aerosols that are coated with water are of interest in many disciplines including
atmospheric remote sensing and radiative transfer calculations, we also present a solution
for the scattering properties of a coated sphere in an absorbing host medium. The
previous solution for a homogeneous sphere in an absorbing medium is a special case of
the present study when the core and shell of the coated sphere have the same refractive
index. In Section 2 we present the basic mathematical expressions for the inherent and
apparent scattering properties of a coated sphere within an absorbing medium. In Section
2 we also discuss the proper form of the single-scattering properties for radiative transfer
calculation involving a polydisperse particle system in an absorbing host medium.
Presented in Section 3 are the numerical results and discussions. Finally, the conclusions

are given in Section 4.

2. Inherent and Apparent Optical Properties of Coated Spheres in Absorbing

Medium

A. Transverse Components of Incident and Scattered Waves in a Spherical Coordinate

System for Coated Spheres embedded in Absorbing Medium

In this study we select the time-dependent factor exp(—iwr) for the complex
representation of a temporally harmonic electromagnetic wave, where @ is the angular
frequency of the wave. In addition, we employ the Gaussian unit system for the

electromagnetic field. Let us consider the scattering of an incident electromagnetic wave



by a coated sphere embedded in an absorbing medium. As shown in Fig. 1, the complex
refractive indices for the particle core, particle shell, and the host medium are m;, m;,
and my, respectively. Let the incident electric field be polarized along the x-axis and
propagate along z-axis of the coordinate system. Thus, the incident electric and magnetic
fields can be written as follows:

E;(x,y,2) = é, E, explikmz), (1a)

F[,-(x,y,z) = —éV X E,.(x,y,z) = é),mOEO exp(ikmyz), (1b)

where k=m/c in which ¢ is the speed of light in vacuo, E is the amplitude of the
electric field, and é, and é, are the unit vectors along the x-axis and y-axis, respectively.

Note that in the present study we assume permeability to be unity. The expansions of
incident and scattering fields in terms of spherical harmonics for a coated sphere within
an absorbing medium is similar to their counterparts in the case of the conventional Mie
formulation. To derive inherent and apparent cross sections and scattering phase matrix,
it is sufficient to consider the transverse components of the incident and scattered fields
decomposed in a spherical coordinate system. It can be shown that these field

components can be expanded in the form

Eig(9,6,r) = <252 > E,[7,(cosO), (mokr) = i, (cosOW , (mokr)]. (2a)
m0k7' v
Eo(80,)= 222N £, [7, (cosOy, (mykr) ~ i, (cosOW , (mokr)], (2b)
mykr =
(9.6 = 23 £ (1, (osO) (mokr) = T, (eSO (mokr)) 20)

n=1



Hiy(9,0,r)= %zEn[% (cosB)y, (mykr)— i, (cosOW' , (mykr)], (2d)

n=1

E,($,6,r) = ;‘:;"’ 2 E,lia,T,(cos0)E, (mokr) = b, 70, (cosO)E, (mokr)], (2€)
E,s(9.6.7)=- ::,f’ i E,lia,t,(cos0)&, (mokr)  b,T,,(c0sO)E, (mokr)], (2f)
H,9(9.6,r) = —S—i,;“r—‘”gEn[annn (cosB)E, (mokr) — ib, T, (coSO)E, (mokr)] (2g)
Hog(6,6,7) = - °‘,’;¢ gE,,[anr,xcose)é,,(mokr) ~ ib, 7, (cosO)E, (mokr)],  (2h)

where we have employed the common nomenclature for the special functions involved in

the Lorenz-Mie algorithm (e.g., Ref. 2, 4, 5); for example, y, and &, indicate Riccati-

Bessel functions associated with spherical Bessel function j, and the Hankel function
K" respectively. The functions 7, and 7, are the functions of scattering zenith angle

and are related to the associated Legendre function P,,l.

The coefficient E, can be
determined from the orthogonality of the spherical harmonics and is given by

E, = Eyi"(2n+1)/[n(n+1)]. (3)
The coefficients a, and b, in Egs.(2e)-(2h) for the scattered field can be determined
from an electromagnetic boundary condition that is imposed at both the interfaces of the
core and the shell of the particle and the interface of the scatterer and the host medium.

Here, without a detailed derivation, we give these coefficients in a form similar to that

presented in Bohren and Huffman’ as follows:

_ [Dumg | my + nl(mokRy )W, (mokRy) = W,y (mgkRy )

g , (4a)
[Dnmo /mz +n/(mokR2)]§n(m0kR2)"gn_l(mokRz) .

n



- [G,my | my + 1 /(mokR) W, (mokRy) — W, (mokRy)

= , (4b)
[Gnmz /mo +n /(mOkRz )]én(mokRz) - én_l(m()kRz)
B = DulmakRy) = 4,0, (mykRy ) [y, (mykRy )] (4¢)
" V= A, [ X, (mykRy )/ W, (makRy )]

G = DulmakRy) = B, [, (mykRy)/ yr, (makRy )] (4d)

5 1- Bn[Xn(mZkR2)/ Wn(mZkRZ )] ’
A = mZDn(mlle)_man(mZle) (46)

" my D, (mkR ) X, (makR) W, (mykR)] = my[ x5 (makRy) W, (makRy )]

m D, (mkRy) — my D, (mykR, ) (4f)

o= 1, D, (my kR X (kR ) /W, (mak Ry = ma [ (makRy) W, (makR)T
where R, and R, are the radii for the core and the shell of the coated sphere, as is shown
in Fig. 1, and D, is the logarithmic derivative of Riccati-Bessel function y,,, that is,
D,(x)=d[lny,(x)]/dx. In the case when the refractive index m, is unity, the

coefficients in Eqs. (4a) and (4b) reduce to a form that is exactly identical to that given in

Bohren and Huffman’. If the sphere is homogeneous, i.e., m, = m, the coefficients, a,

and b, reduce to the form

_ [mo D, (mokR)/ my + n {mokR)W, (mokR) ~ Y/, (mgkR)

" [myD,(mgkR)/ m; + n/(mokR)E, (mokR) — &, _|(mokR) ’ ()

_ [my D, (mikR) ! mg +n (mokR)W , (mgkR) =y, (mokR)

, 5b
" [mD,(mkR)/ my + nl(mgkR)IE, (mokR) — &, (mokR) (b)

where R is the radius of the homogeneous sphere. The coefficients in Egs.(5a) and (5b)
are equivalent to the form presented in Kerker® and Ross'’ that was recaptured in Fu and
Sun'?. Note that the form expressed by Egs. (5a) and (5b) is more suitable for numerical
computation, as is evident from the extensive discussions in Wiscombe' and Bohren and

Huffman®. In the numerical computation of Egs.(4a)-(4f), we have taken the advantage of



the various numerical techniques suggested by Wiscombe®’, Bohren and Huffman’, and
Toon and Ackerman®. In particular, following Kattawar and Hood', in the computation
of the higher-order terms of a, and b, in Eqgs. (4a) and (4b) for large size parameters we
use the corresponding expressions in the homogeneous case for the two coefficients when

n>| mkR, | to preserve numerical significance and also for computational economy.

B. Scattering Phase Matrix and Inherent and Apparent Cross Sections

For an incident wave propagating in an absorbing medium along the z-axis of the
coordinate system, the incident irradiance (i.e., the magnitude of Poynting vector) can be

written as follows:

F(z)= |§C—~ Re(E; x H )= K exp(—2my ;kz), (6)
T

where the asterisk indicates complex conjugate, and mj; is the imaginary part of the
refractive index of the host medium. The quantity £ is the incident irradiance at the
origin of the coordinate system in the case when the scattering particle does not exist,
which, derived on the basis of Eqgs. (1a) and (1b), equals to cm,. | £ > /(87) where my.,

is the real part of the refractive index of the host medium. Note that (c/87)Re(E; x H.")

in Eq. (6) is the time-averaged Poynting vector in the Gaussian unit system for a time-
harmonic electromagnetic wave. Because the incident irradiance varies with the
coordinate value z in the host medium, the definitions of various optical cross sections
(i.e., the ratio of corresponding flux to the incident irradiance value at a reference
location) are arbitrary in this case. That is, the cross sections depend on the selection of

the reference incident irradiance plane. In the present study, we select the reference plane

10



through the origin for the incident irradiance because of the advantage of this convention
for application to multiple scattering processes as will be shown later. Thus, the
interception cross section of the particle for blocking the incident radiation, when it is
defined with respect to the incident irradiance at the origin (i.e., the ratio of the incident

flux intercepted by the particle to ), is then given by
= —j F(R, cosO)R,* sin0d6d¢
ml2

2 2[(2m0,kR2 - l)exp(ZmolkRz) + 1]

=7R,
(2m01kR2)

(7

Note that the expression of the total incident radiation flux intercepted by a sphere in an
absorbing medium has been given by Mundy et al.” Evidently, the interception cross
section depends not only on the particle geometric projected-area but also on the
dielectric properties of the host medium as well as on the incident wavenumber.

The total energy scattered by the particle, prior to its attenuation due to the
absorption by the host medium, can be obtained by integrating the radial component of
the Poynting vector associated with the scattered wave on the particle surface. Thus, the
corresponding inherent scattering cross section defined with respect to the reference

irradiance K, can be given as follows:

Z”J'O £ Re{[E,(6,6,R,)x (6,8, Ry)]- 71 R,? sin 0d6dp

j jo £ Re[E,5(9.6,R)Hyp(9.6, Ry) — E,5(9.8. Ry) H (9.6, Ry IR, sin 6d6d¢

2 1 . .
=== ) Im{;{)‘Z(z" + 1)[’ a, [* & (mokRy )&, (mokRy )= b, I &,(mokRy )&, (mokRz)] ,(8)
n=l1

mork
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where 7 is a unit vector along radial direction. The symbols, Re{ } and Im{ }, indicate
the real and imaginary parts of an argument, respectively. Similarly, the absorption cross
section defined with respect to F, can be obtained as follows:

o :_Lf”j” £ Re{[E(9,6,Ry)+E (0,0, R)IX[H] (4,6, Ry)
“ K Jo 8w (9,0, 155 s\9,0, 15 (A2

+ (8,0, R)]- 7Ry sin6d6dg
1 2rpem ¢ * *
==, [} o RellE(0.6.R)+ Eq(6.0.R)) [H(9,0, Ro) + Hig(9.6.Ry)]
~{Ei(9,0, R) + Eyg(0,6, Ry)] [ Hig(6,6, Ry) + Hg(0,6, R} R, sin 646

2n I « " , .
= > Im '—2(7—'1 + D[, (mokRy )y, (mokRy) — W, (mokRy ), (mokRy )
my,k m

n=1

+a, &) (mokRy YW, (mokRy ) — b, & (mokRy Wy 1, (mgkRy)

+a:u/;,(m0kR2 )5:(”"1“3) - b;'l/n(mokRz )5,’,*(m0kR2)
| a, 2 & (mokRy)E, (mokRy )+ | b, §n(m(>kR2)§f,*(mokRz)}- (9)

The extinction cross section o, corresponding to the scattering and absorption cross
sections in Egs. (8) and (9), as is the same as its conventional definition when the host
medium is nonabsorptive, is the summation of absorption and scattering cross section,
that is

0,=0,+0,. (10)
Note that mathematical expressions that are similar to Egs. (8) and (9) but in terms of
absorbed and scattered energy have been presented by Sudiarta and Chylek'' in the case

for a homogeneous sphere. To derive the energy absorbed by a homogeneous sphere in

12



an absorbing medium, Fu and Sun'’ used the internal field on the particle surface that is
approached from the inside of the particle. It should be pointed out that the approach
based on the internal field is more complicated than that based on the fields outside the
particle in the case for a coated sphere. The increased complexity occurs because the

internal field for a coated sphere, as is shown in Bohren and Huffman’, is in the form of

oln —iWnNélzr:]’ (10)

7 () .l = (2
E = ZEII[/;?MI()IZI _lgn]vill + vnM( )
n=1

whereas the counterpart of the preceding expression in the case for a homogeneous

sphere is in the form of
E = ) E,le,Myy), ~ id,Nij) 1. (1)
n=1

In Egs. (10) and (11), M8D and N2 are vector spherical harmonics whose detailed

o.eln o.eln
definitions can be found in van de Hulst? and also in Bohren and Huffman’. We note that
that the numerical computation of the four coefficients in Eq. (10) is much more
complicated than the computation of the two coefficients in Eq. (11).

We apply the conventional definitions of the scattering and extinction efficiencies
to the cross sections given by Egs. (9) and (10) and define formality efficiency factors as
follows:

0. =0, (R}), (12a)
O, = o, (TR3). (12b)
Furthermore, we introduce the interception efficiency that is defined as

0, =0, [(nR}). (13)

13



where ©; is the interception cross section given by Eq. (7). It can be proven that the

interception efficiency approaches to unity if the absorption of the host medium reduces
to zero. In this circumstance, the scattering and extinction efficiencies defined in Eq.
(12a) and (12b) regain their physical meanings as in the conventional sense. Note that the
preceding efficiencies can be unbounded for a large size parameter if the host medium is
strongly absorptive because the cross sections are specified with respect to the incident
irradiance at the particle center, as is evident from Eqgs. (7)-(10).

When the host medium is absorptive, the true or inherent scattering efficienciy

(hereafter, referred to as §, ;,) for the scattering particle should be defined as the ratio of

the scattered energy to the incident energy intercepted by the particle. Similarly, the

inherent extinction efficiency (hereafter, referred to as O, ;) is the ratio of the total

attenuated (scattered + absorbed) energy to the portion of the incident energy intercepted
by the particle. Mathematically, these two inherent optical efficiencies and their ratio

(i.e., the inherent single-scattering albedo) can be expressed as follows:

Qe,inthe/Qi’ (14a)
Oinh =0/ O, (14b)
®0.inh = Ds.inh / Ce.inh = G5 / Ces (14c)

where Q,, O,, and @, are defined in Eqgs. (12a), (12b) and (13), respectively. It is worth

noting that the extinction and scattering efficiencies reported in Sudiarta and Chylek''

and also in Fu and Sun' are the inherent quantities, Q, ;. and Q, oy, defined in Eqs.

(14a) and (14b). Evidently, the inherent efficiencies do not have the conventional
meanings in that the corresponding cross sections are not the products of the efficiencies

and the geometric projected-area of the sphere. As a matter of fact, neither extinction nor

14



scattering cross section may be defined without properly referencing a location for the
incident irradiance when the host medium is absorptive.

The preceding inherent scattering efficiency is derived from the near field at the
particle surface and is less useful in practice, because the scattered wave in the radiation
zone is usually the relevant quantity. Thus, it is necessary to derive the apparent optical
properties based on the far-field information. Using Egs. (2e) and (2f) and the asymptotic
form of the Riccati-Bessel functions, we can obtain the scattered field in radiation zone

(or far field) that is given as follows:

exp(imykr)
Ey6(8.0.7),, 4o = cos¢_Ll_’m)—]0;— EyS., (15a)
. exp(impkr)
Ec4(9,0.7 )‘Im(,kr\—wo = _S‘“¢'702{_E0S" (15b)

where the amplitude scattering functions S; and S, are given, respectively, by

S = ;%[annn (cos@) + b,7,(cosH)], (15¢)
S, = Z niz i :) la,T,(cosB)+ b,m,(cosB)]. (15d)

n=|
Egs. (15a) and (15b) are similar to their counterparts for the case when the host medium
is nonabsorptive, except that the wavenumber in these expressions is scaled by the

complex refractive index m,. From Egs. (15a) and (15b), the two components of

scattered wave that are parallel and perpendicular, respectively, to the scattering plane

can be expressed in a matrix form as follows:

[Es//(¢’9a") =exp(imokr)(Sz 0 (EIO//) (16)
Eg‘l(‘p’e’r) _im()kr 0 Sl EiO_l_ ’
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where (E,,,E,) )=(E;9.—E,s) and (Ey,,E; )= (E)cosg,Eysing). As the scattered

wave in the far-field region is a transverse wave, the magnetic field can be related to the
corresponding electric field by an expression similar to Eq. (1b). Thus, the irradiance

associated with the scattered wave in the radiation zone or the far-field region is given by

cm r F4
F(9.6:r)=— =( By I+ By )

cmy, 2 exp(=2my ;kr) 2 2
= —_— (] S, +| S
87 | 0’ |m0 |2 kzrz (l I* ‘ 2[ )
exp(—2my ;AR

= expl—2mq k(- R)IF, Dis s, an

g P K37
In the preceding equation, the factor exp[-2m;;k(r — Ry)] accounts for the absorption of
the host medium in the region between particle and the observational point. The apparent
scattering cross section of the particle, with respect to reference irradiance Fy, after it is
traced back from the far-field scattered wave observed at a distance » from the origin of
the coordinate system, with an associated correction of the wave attenuation due to the

absorption effect of the host medium, is given by

5 = exp[2myk(r — Ry)]

r”j” F.(9,0 r)r? sin6d6d¢
o Jo "7

N Fb
exp(—2mykRy) (27 (7 ) L
|mo I & J [ 0Si7+18, P)sinbdedg
= SEEPCBGER)Y @+ 1), 418, ) (18)
|mg |~ k ~

A comparison of the scattering cross section in Eq. (18) to its counterpart in the case of a
nonabsorptive host medium shows that they are similar except for an exponential factor

exp(—2mg;kR,) along with a complex host medium refractive index m involved in

16



Eq.(18). Furthermore, the apparent scattering efficiency is quite different from its
inherent counterpart, as is evident from the comparison between Eqs. (8) and (18). This
discrepancy occurs because the host absorption over the distance between particle and an
observational point in the radiation zone cannot be accounted for exactly by the
exponential factor exp[2mg;k(r— Ry)]. The local plane-wave feature of the scattered
wave, described by the exponential form for the spatial phase variation in Eq. (16), is
valid only for the far-field regime. Thus, an assumption of exponential attenuation for the
near-field region will overestimate or underestimate the absorption in the host medium.
But this will not affect multiple scattering calculation as long as the apparent scattering
cross section is used, though the host absorption is assumed to have an exponential form
regardless of the location in the medium with respect to scattering particles.

In practice, it is critical to transform the incident Stokes vector to its scattered
counterpart using the apparent single-scattering properties. Based on Egs. (16) and (18)
and the definition of Stokes vector’, the Stokes vector associated with scattered field is

related to its incident counterpart via scattering phase matrix as follows:

1.(9,0,r)
0.(4,6,r) _exp[—2mgy;k(r — Ry)10,
U.(9,0,r) P2
V.(9.8,r)
I A/ Ay 0 0 Lio
4r| O 0 Py/Ry —P3/By | Ug |’
0 0 P/ By Byl By [\ Vo
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where (1y, Qi Ui, Vio) is the incident Stokes vector at the origin of the coordinate

system. Note that the incident Stokes vector associated with a wave propagating along z

coordinate axis can be expressed for an arbitrary location (¢.6,r) in the form of

1(9,6,r) Ly
0,0.6.r) | O
U,(6,0.7) = exp(—2my;krcos8) Uy | (20)
V;(¢,9,}‘) ;0

In Eq. (19) B, is the normalized phase function in the sense that [jg P, (cos@)sinBd6]/2

is unity. From the far-field perspective, the parameter G, is the scattering cross section.
For this reason, we refer to &, as the apparent scattering cross section as viewed from a
point away from the particle. The apparent scattering cross section should be used in any
radiative transfer calculations dealing with the far-field. The nonzero elements of the
phase matrix in Eq. (20) take the same form as for the case for non-absorbing host

medium and are given by

P =— [SP+SE la)
El(2n+ D(a, > +1b, )

Pu”’uﬁ%:—:z—;, (21b)

B; n=|—§2jff—‘|§)lz, (21¢)

Rxﬂﬁﬁﬁ{%. (21d)

The asymmetry factor has the same form for either the absorptive and non-absorptive

host medium, as is evident from the comparison of the results presented by Kerker' and
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Fu and Sun'’. In addition, the asymmetry factor for a coated sphere can be expressed in

the same form as that for a homogeneous sphere, given by

/4
g= %J- P, (cos8)cosBsin6d0
0

o0

2" (Re[(n = 1)(n+1)(@,_1a; +b,_1by)/ n]+2n = D)/[(n = Dn]Re(a, b, )}
_ 5 @)

> @n+ila, [ +16,1)

n=1

For the absorption within the particle, we do not distinguish between the apparent

and inherent features. Thus, the apparent extinction cross section associated with the &

can be defined as follows:
6,=0,+0,, (23)
where the absorption cross section is that defined in Eq. (9). As is similar to the case for

inherent optical properties, the apparent scattering and extinction efficiencies can be

defined as follows:
0, =6, nRy). (24a)
O, =6, (nR3). (24b)
The apparent extinction and scattering efficiencies as well as single-scattering

albedo that are defined with respect to the truly intercepted incident irradiance are given

by
Qeapp = e/ Os (25a)
Osapp =05/ O (25b)
®0,4pp = Os.app ! Ceapp = Os / Ce- (25¢)
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The preceding apparent scattering efficiency is essentially the unattenuated scattering
efficiency defined by Mundy et al.’ in the case of homogeneous sphere. However, the
extinction efficiency defined by those authors can be smaller than the scattering
efficiency. This shortcoming is overcome by the present definition of apparent extinction

efficiency.

C. Proper Form of Single-Scattering Properties for Multiple Scattering by a Polydisperse
Particle System within Absorbing Medium

In this section we present the radiative transfer equation derived for a
polydispersive system in an absorbing medium based on the apparent single-scattering
properties. For simplicity without losing generality, we consider the scalar radiative
transfer equation. That is, we do not account for the full Stokes vector but only the
intensity of radiation. Thus, according to Eq. (19), for the scattering process associated
with an individual particle with a radius R, we can express the scattered intensity as

1(6,0,) = exp[—2m0r,-£c(r—R)O'S %Ima (26)

where & is the apparent scattering cross section defined in Eq. (18). In Eq. (26), the
transformation of incident intensity to the scattered intensity explicitly involves the
particle size, R. This is a shortcoming that prevents the applicability of Eq. (26) to
multiple scattering processes involving a polydisperse particle system. To circumvent this
disadvantage, we define the scaled apparent cross section as follows

Oy scaled = €Xp(2mokR)G; (27a)

and consequently, the scaled extinction cross section by
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O-e,scalcd =0,t &v,scaled' (27b)
With these definitions, Eq. (26) can be simplified as follows:

exp(—2 mOjkr)a-s,scaled ﬁl

1(9,0.r)= >

Lo. 28
r 4r i0 (28)

In Eq. (28) the incident intensity is specified at the center of particle. Through the use of
the scaled scattering cross section, the absorption path for two subsequential scattering
event processes is measured between the centers of particles. This feature substantially
simplifies the radiative transfer calculation in absorbing medium.

For a ploydisperse particle system, let us assume the volume-normalized
concentration for the particle at a location within the host medium to locally be N(5, R),
where R is the radius of the particle and § is the position vector. The extinction and
scattering coefficients due to the effect of particle scattering and absorption as viewed
from the far-field perspective, rather than the absorption of the host medium, can be

given by the particle’s scaled apparent scattering properties as follows:

. Ry _ ) )
B, ,(5)= j &, wcated (- NG, R)dR, (292)

min

B.,(5)= j ™ 8, caled(§- RIN(F, R)R, (29b)

min

where the subscript p indicates that the extinction and scattering coefficients are for

particles. The quantity N(5,R) has units of number/volume/length and G g1eq (also

G scaled) has units of area. Thus, both Be,p(E ) and BS’p(E ) have units of inverse length.

[n the present formulation we ignore the Rayleigh scattering by the molecules of

the host medium for the sake of simplicity, which, in principle, can be treated in the same
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manner as that for particulate inclusions in the medium. The extinction coefTficient for the
host medium is due solely to the absorption of the medium and is given by

Be host(3) = 2mq;(5)k . (30)
Based on the fundamental principle of radiative transfer (e.g., Chandrasekar'”) and Egs.
(18a), (18b), and (19), the radiative transfer equation for the multiple scattering process
occurring in an absorbing medium can then be written as follows:

(Q-VI(Q,5) = ~[B, () + By pow (DU(E2,5) + J(L25), (31a)

where £ is a unit vector specifying the propagating direction of the radiation. The first
term on the right-hand side of the equation corresponds to the attenuation of radiation by
particle extinction and host medium absorption.J(QE ) is the source function arising

from the multiple scattering by the particles, given by

Sp()

H5) = JI(Q 5)P(5,0,€2)dSY . (1b)

In Egs. (31a) and (31b), we do not distinguish between the direct and diffuse radiation. In
this form of the radiation transfer equation, the source of the radiation can be
implemented through a boundary condition (e.g., Preisendorfer and Mobely'®). In
practice, numerical accuracy is achieved by separating the diffuse and direct components
of radiation. Situations exist where it is difficult to distinguish between the diffuse and
direct compoents of the radiation, such as for the solution of the radiation field inside a
water layer with a wavy surface. In Eq.(31b), the phase function for the polydisperse
system is given by the mean value obtained from the average particle phase function

integrated over a specified particle size distribution and takes the form of
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max

. A O-s,scalcd(E’R)Pll(g’R’-é’fz)N(E,R)dR
P(5,62,(2 ) = Lo . (32)

max

O scaled (5, RYN(S, R)dR

min

It is straightforward to use the scaled apparent single-scattering properties in
various radiative transfer computational methods even for those that are not explicitly

based on the radiative transfer equation. For example, in the Monte Carlo method
involving an absorbing host medium, one can use Be,p(§ ) to determine the mean free-

path that a photon encounters next scattering or absorption event in a manner as in the

conventional method. For a scattering or absorption event, one can use the ratio of
ﬁs’p@ ) to Be,p(§ ) to determine whether the photon is scattered or absorbed. The new

propagating direction of the scattered photon may be determined from the phase function
according to a conventional algorithm. The effect of the absorption of the host medium is

that the weight for the photon is scaled by a factor of exp(—2my;kd) between two

successive scattering (or absorption) events, where d is the distance between the two
events or, alternatively, the free-path length. Furthermore, in dealing with multiple
scattering in an absorptive host medium, weighting procedures for the bulk single-
scattering properties may be a candidate for computational convenience (e.g., Tsay et

al."’, by Platnick and Valero'®)

3. Numerical Results and Discussions

Based on the analyses in the previous section, we have developed a computational
program to solve for the inherent and apparent optical efficiencies and the full phase

matrix for a coated sphere within an absorbing medium. The previous codes written by
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Wiscombe*, Bohren and Huffman’, and Toon and Ackerman® for spheres in nonabsorbing
medium were of great benefit to the development of the present code. In particular, we
find that the convergence criterion suggested by Wiscombe™'is useful for computational
efficiency and accuracy. The present code has been validated via comparison with the
previous inherent optical efficiencies and phase function ot homogeneous spheres in an
absorbing medium reported by Sudiarta and Chylek'' and Fu and Sun"”. Additionally, the
results obtained from the present code agree well with those from the conventional
Lorenz-Mie calculations when the absorption of host medium is reduced to zero.

Figure 2 shows the inherent and apparent extinction efficiency, single-scattering
albedo, and asymmetry factor for spheres of soot embedded within ice at 1.38, 3.75, and
11 um. The complex refractive indices of ice and soot at the three wavelengths are
obtained by interpolation of Warren’s data'® for ice and d’Almeida et al.’s data™ for soot
and are listed in Table 1. These three wavelengths were chosen because they are
commonly used in airborne or satellite retrieval. The 1.38 pm band is very effective for
detecting cirrus clouds. The single-scattering properties of soot or air bubbles within ice
are interesting to the study of cirrus clouds. Ice crystals within cirrus clouds may contain
black carbon coming from biomass burning and has not been fully explored.
Furthermore, ice crystals may contain pockets of air bubbles; this effect has also been
ignored to date in the computation of single scattering properties. To solve for the optical
properties of ice crystals with impurities on the basis of ray-tracing technique (e.g.,
Macke et al.?', Labonnote et al.”?), Lorenz-Mie calculation is carried out for the inclusions
that are assumed to be very small and the surrounding ice medium is treated as unbound.

From Fig. 2, the inherent and apparent values are essentially the same at 1.38 pm for
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either the extinction efficiency or the single-scattering albedo because the absorption of
ice is negligible at this wavelength. However, substantial differences between the
inherent and apparent optical properties are noted at 3.75 and 11 um, in particular, for the
case of the single-scattering albedo at 11 um. From Fig. 2, one may notice that the
apparent scattering cross section is smaller than its inherent counterpart. Figure 2 also
presents the asymmetry factor for the phase function — note that the asymmetry factor can
be negative. In addition, the inherent extinction efficiency converges to 1 instead of 2.
“These two features associated with the optical properties of a sphere in an absorbing
medium have been reported by Sudiarta and Chylek'', and Fu and Sun'’.

Figure 3 is similar to Fig. 2, except that the scatter in the former case is a void (air
bubble) in the medium. Because the air bubble is nonabsorbing, both inherent and
apparent single-scattering albedo is unity. For the extinction efficiency, significant
differences are evident from a comparison of the apparent and inherent optical properties
at 3.7 and 11.0 um, wavelengths at which ice is strongly absorptive. For the asymmetry
factor shown in Fig. 3, negative values are not observed. When the host medium is
strongly absorptive, the diffraction wave that contributes to forward scattering is
essentially suppressed. If the scattering particle is also strongly absorptive, there is no
transmittance through the particle to contribute to forward scattering. In this case the
backscattering can be larger than forward scattering, leading to negative asymmetry
factor. Contrary to this argument, for the air bubble case shown in Fig. 3, there still is a
significant amount of radiation transmitted through the air bubble and the forward

scattering is stronger than backscattering.
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To convert the inherent or apparent extinction or scattering efficiency to the

corresponding cross section, the interception efficiency factor Q; is required, as is evident

from Egs. (14a)-(14b), and (25a)-(25b). Figure 4 shows the interception efficiency for
three wavelengths with ice as the host medium. At 1.38 um wavelength, the absorption of
ice is negligible, and Q, is essentially unity. However, for the two absorbing wavelengths

the interception efficiency can be very large. In particular, at 11 pm, the @, factor can be

unbounded when the particle size increases. This occurs because the interception factor is
defined with respect to the incident irradiance at the particle center. For a strongly
absorptive host medium, the incident irradiance can be attenuated substantially within a
distance on the order of the particle radius that is comparable to the incident wavelength.
Figure 5 shows the complete nonzero elements of phase matrix for homogeneous
spheres within an absorbing media. For the host medium, the refractive index is selected
as 1.0+i0.0, 1.0+i0.01, and 1.0+i0.05, corresponding to the values used in Sudiarta and
Chylek''. The particle refractive index is selected as 1.33+i0.0 that is essentially the
refractive index of water droplet at a visible wavelength. Obviously, the absorption of the
host medium substantially influences the scattering phase matrix of the particles,
particularly for the large size parameter. For the moderate size parameter X=50 and large
size parameter X=500, the scattering of the sphere is subtantially reduced in
sidescattering directions when the host absorption is strong, as is evident from the phase
functions shown. For scattering by an individual sphere, the resonant effect is significant
for the phase matrix elements associated with polarization. The resonant effect is
particularly pronounced for the phase elements associated with the polarization

configuration. Recently, using modern visualization techniques, Mishchenko and Lacis”
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invistigated the morphology-dependent resonances for homogeneous spheres within a
nonabsorbing host medium. In future work, it would be interesting to study the impact of
the host absorption on the resonances in a manner suggested by those authors.

To smooth out the resonant fluctuations, we include a size distribution in the
scattering calculation. Figure 6 shows the phase matrix for three mean size parameters:
10 with a binwidth of 5 to15, 50 with a binwidth of 40 to 60, and 500 with a binwidth of
450-550. The effect of host absorption is pronounced. For very strong absorbing host
medium, the phase function value is significantly reduced in forward and sidescattering
directions. In particular, the rainbow feature associated within a scattering by spheres is
smoothed out by the host absorption, as is seen from the phase functions shown for the
case of <X>=500. The effect of the host absorption on the polarization configuration of
the scattered wave is also evident, which is particular significant for P,,/P,, and -P,/P,,.

Figure 7 is similar to Fig. 6, except that the scattering particle is soot for the
former. For the moderate and large size parameters, i.e., <X>=50 and 500, the phase
function values are larger for backscattering directions than for either forward and
sidescattering directions when the host absorption is large. This occurs because soot is a
strongly absorbing medium and does not allows the transmission of the incident radiation
whereas the host absorption suppresses the diffraction peak. From Fig. 7, it can also be
noted that the host absorption has a very minor effect on polarization. Since soot is very
absorptive, the external reflection occurring at the particle surface dominates the scattered
field. The polarization configuration of the externally reflected wave is not sensitive to

particle size and the host absorption.
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Black carbon in the atmosphere may serve as nuclei for cloud droplets and
modifies the bulk radiative properties of clouds. Figure 8 shows the inherent and apparent
extinction efficiency and single-scattering albedo for water droplets containing soot for
weak and strong host absorption conditions. The ratio of the radius of soot core to the
radius of water shell has been selected as R /R, =0.1, 0.5, and 0.9. For extinction
efficiency, the effect of the impurity on water droplets is primarily in the size parameter
region of 1-20 since the extinction efficiency will approach its asymptotic value when
size parameter is large. The effect of the impurity on single-scattering, however, is
pronounced for the entire size parameter spectrum shown. Even a small amount of soot
added to water droplets can substantially reduce the single-scattering albedo, as is evident
from the case for R;/R, =0.1. For weak host absorption values, the single-scattering
albedo tends to reach its asymptotic value when the size parameter is large. On the
contrary, the single-scattering albedo decrease with increasing size parameter in the large
size parameter regime if a strong host absorption is involved.

Figure 9 is similar to Fig. 8, except that Fig. 9 shows results for ice spheres
containing air bubbles. Because the imaginary part of ice is small and air bubble is
nonabsorptive, both inherent and apparent single-scattering albedo is essentially unity
regardless of the thickness of ice shell of the particles. From the extinction efficiencies
shown, the extinction maximum is shifted toward large size parameters when the
thickness of the ice shell decreases. In addition, the host absorption reduces the
asymptotic values of the extinction efficiency in a manner similar to the case for

homogeneous sphere.
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Figures 10 and 11 show the nonzero elements of phase matrix for soot spheres
coated with water shell and for ice spheres containing air bubbles, respectively. For both
cases, the refractive index of the host medium is assumed as 1.0+i0.01. A significant
sensitivity to the ratio of core size to the shell size is demonstrated for the single-
scattering properties. For the coated black carbon, the polarization configuration for the
case when black carbon is dominant (i.e., R,/ R, =0.9) is quite different from the other
two cases for which the water is the dominant component of the scatterer. Similarly, for
the case of a hollow ice sphere, the polarization feature is unique when the ice shell is

thin and particle size is large.

4. Summary and Conclusions

We have extended the conventional Lorenz-Mie formalism to the scattering
process associated with a coated sphere embedded within an absorbing medium. We have
clarified that there are two ways of deriving the scattering and extinction cross sections.
The scattering cross section derived from the near-field on the particle surface is the
inherent optical properties of the particles, which is less useful in practice. Alternatively,
the scattering cross section may be derived from the far-field wave with a proper scaling
of the host medium absorption over the distance between particle and the location where
the far-field is specified. This defines the apparent optical properties that implicitly
contain the host absorption information in near-field regime. We show that the
mathematical expressions for the inherent and apparent scattering pr.operties are quite
different. Furthermore, we have developed a computational code to compute the inherent
and apparent extinction efficiencies, single-scattering albedos, and asymmetry factors as

well as the complete phase matrix.
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Numerical calculations for spheres in absorbing media show that apparent and
inherent optical properties can be different by several tens of percent if the host
absorption is strong. The difference, however, reduces to zero if the host absorption is
negligible. If the scattering particle is transparent (i.e., the imaginary part of the refractive
index is zero), the host absorption has a significant impact of the nonzero elements of the
phase matrix associated with the polarization configuration of scattered wave. We find
that the effect of host absorption on the polarization effect is small if the particle itself is
also strongly absorptive even if the host medium is substantially absorptive. Two specific
applications discussed were of the scattering characteristics of (a) black carbon coated
with water and (b) hollow ice spheres, i.€., ice spheres containing air bubbles. We found
that black carbon included in water droplets can substantially reduces the single-
scattering albedo for small size parameter even if the amount of the impurity is small. For
hollow ice spheres, the single-scattering albedo is essentially unity regardless of host
absorption. However, the variation pattern of the extinction efficiency versus size
parameter can be substantially changed by strong host absorption.

In the case of a large size parameter (<X>=500) for coated soot or hollow ice
spheres, the polarization elements of the phase matrix are unique in that -5,/ R,
approaches unity whereas P/ P reduces to zero for scattering angles between 10-80° if
the particle shells are thin. Finally, we have defined a proper form of single-scattering
properties for application to multiple scattering computation. It is shown that the

conventional technique for radiative transfer calculations can be applied if the scaled

apparent single-scattering properties are used.
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Table 1. The complex refractive index for soot and ice at three wavelengths, which are

based on the interpolation of the data presented by Warren and d’Almeida for ice and

soot, respectively.

Wavelength (pum) Ice Soot
1.38 1.2943+i1.580x10° 1.7804+i4.552x10"!
3.75 1.3913+i6.796x10™ 1.9000+i5.700x 10"
11.0 1.0925+i2.480x10"' 2.23+i7.300x 10"
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Figure Caption

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure S.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Geometry for scattering by a coated sphere embedded in an absorbing
medium.

Inherent and apparent extinction efficiency and single-scattering albedo
values for soot spheres embedded in an ice medium at wavelengths of
1.38, 3.75, and 11.0 um. Also shown are the asymmetry factor values.
Same as Figure2, except that the scatterers are air bubbles in ice medium.
The interception efficiency defined for particles embedded in ice medium
at three wavelengths.

The non-zero phase matrix elements for homogeneous (uncoated) spheres
that are embedded in an absorbing media. Results are provided for three
values of the imaginary refractive index and for three size parameters. The
particle refractive index is assumed to be 1.33+10.0, which is essentially
the refractive index for water at a visible wavelength.

Same as Figure 5 except for a multidisperse particle system.

Same as Figure 6, except that the particle refractive index is 1.75+10.435,
which is the refractive index for soot at a visible wavelength.

Comparison of inherent and apparent extinction efficiency and single-
scattering albedo for a soot sphere coated with water. The refractive
indices for the host medium are chosen to be 1.0+i0.001 and 1.0+10.01.
Same as Figure 8, except that the scattering particles are hollow ice

spheres.
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Figure 10.

Figure 11.

Phase matrix elements for a particle of water-coated soot. The host
refractive index is chosen as 1.0+10.01.

Same as Figure 10, except for a hollow ice sphere.
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